

mindsterms

Alignment

Why Align?

- Inconsistent robot movement
- Differences in map (eg. table not perfectly flat)
- Differences in mission model (eg. mounting position)
- If your robot is inaccurate, but consistently so, you don't need to align

Ways to Align

- Provided Lines
- Walls
- Mission Model
- Images on Map (* Not recommended)

 Important! The closer you align to your target, the more accurate it'll be.

When to Align

- Inaccurate
- Always slightly to the left of the target
- Don't need to align
- Just change your movement

When to Align

- Sometimes on target
- Not consistent
- Need to align

When NOT to Align?

- Before aligning, ask yourself...
 - Can I change the design to make accurate movement less important?
 - If I need to grab an object, can I make my grabber bigger?
 - If I need to push an object, can I make my pushing mechanism wider?

Accuracy is important

Accuracy is not important

- Two commons ways
 - Vertically
 - Horizontally
- Vertical alignment is hard
 - Proof:
 - Make a line following program...
 - Get the robot to follow a straight line...
 - Notice how much it wobbles?
 - If you must, use a "P" control with low gain

Horizontal

Move forward until right sensor sees black

- Horizontal
 - Simple algorithm:
 - Both wheels forward until right sensor sees black
 - Left wheel forward until left sensor sees black
 - Reverse left/right depending on angle of approach
 - May not be perfectly straight to the line after alignment...
 - ...but it doesn't matter as long as it is consistent!

- Tips
 - Keep the sensors as far apart as possible
 - Always turn in the same direction
 - Keep the sensors close to the ground
 - Calibrate your sensors!

Move forward until right sensor sees black...

- Tips
 - Approach the line slowly at an angle
 - Approaching straight will give inconsistent results depending on which sensor sees black first

Align to edge between black Aligning to black line and white \square

Which is more accurate?

Aligning to Wall

- Push against a wall to align the robot
- Keep contact points far apart
- Don't use move degrees / rotation, program may hang if wheels cannot turn
- Use move seconds or better still, unregulated motors (with a wait block)

Aligning to Wall

- Try not to glide against the wall
- Will have difficulties turning...
- ...unless you don't need to turn (ie. only going straight forward and back)

Aligning to Mission Model

- Just like aligning to wall, but push against the mission model instead
- Allows you to align very close to the target, making accuracy very high
- Eliminates errors from inaccurate placement of mission models
- Often the best option!
- ...just make sure you don't break the mission model

Aligning to Images on Map

- Use areas where there is a sharp transition in brightness or color
- Can be difficult to detect, and may require use of special RGB blocks

• Not recommended

Summary

- If possible, change your design to make accuracy less important
- Perform alignment if the robot movement is inconsistent
- Align as close to the target as possible
- Avoid vertical line alignment
- When doing horizontal line alignment, **keep the** sensors far apart

Copyright

- Created by A Posteriori LLP
- Visit http://aposteriori.com.sg/ for more tips and tutorials
- This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

