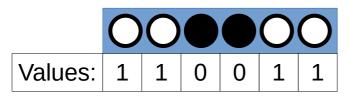
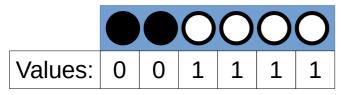


RCAP CoSpace Autonomous Driving (Line Following Intermediate)

A POSTERIORI Play · Experience · Learn


Basics of Line Following

Feedback loop



IR Sensor Array

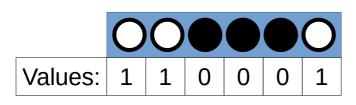
- 6 Sensors that can read:
 - 1 : White
 - 0 : Black
- What are the possible combinations of values?

Line is in the center; go straight

Line is very left; sharp turn left

Line is slightly left; turn slight left

<u>Question</u> How many different combinations are there?


Answer

- With two blacks next to each other...
 - 5 combinations
- ...but what about...

	000000						
Values:	1	1	1	0	1	1	

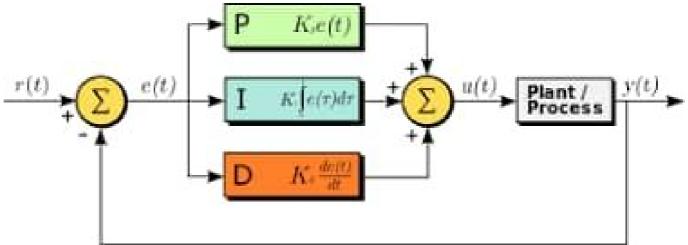
...another 6 more combinations

• ...and...

...another 4 more combinations

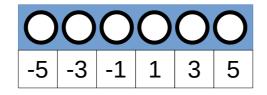
Sensor values								
0	0	1	1	1	1			
1	0	0	1	1	1			
1	1	0	0	1	1			
1	1	1	0	0	1			
1	1	1	1	0	0			

<u>Answer</u> At least 16 combinations! (...did I count wrongly?)

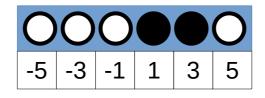

Objective

- Turn the multiple sensor values into a <u>single</u> number that represents the line position
- Example:

Sensors	Single value	Meaning
00000	0	Line is in the center
	1	Line is slightly to the right
00000	-2	Line is slightly to the left
00000	5	Line is far to the right

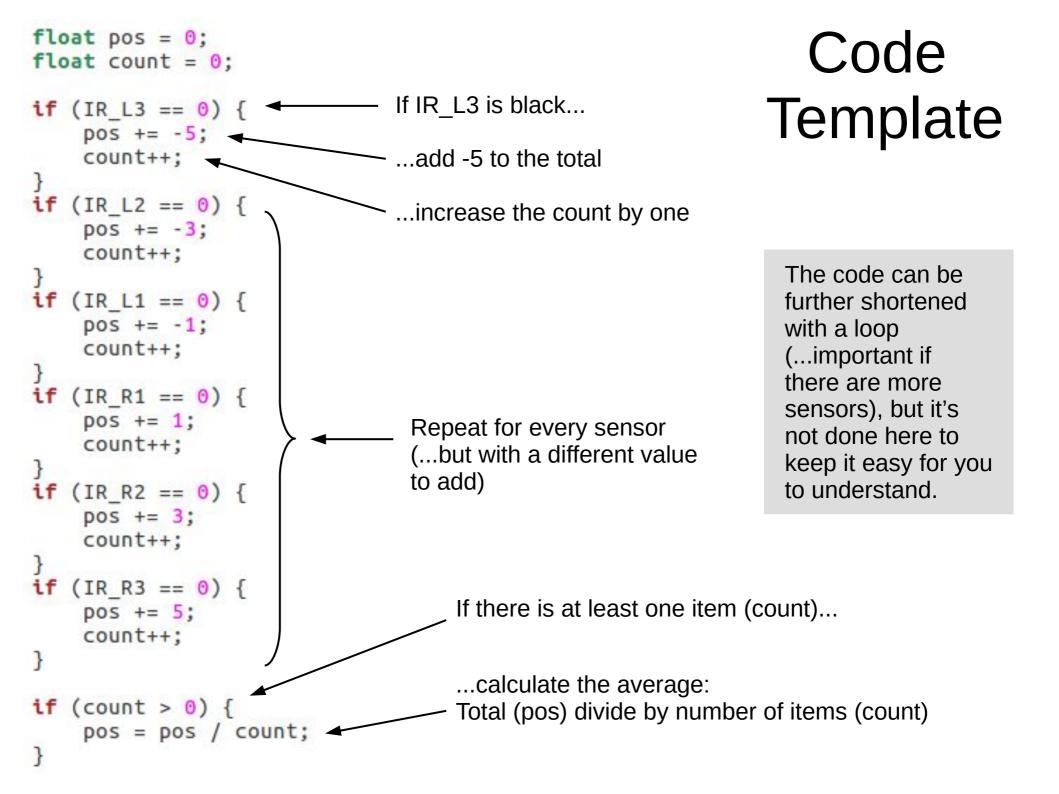

Why?

- Works for any number of black
- Accurate detection of line position
- Easy to program
- Advanced algorithms expects a single input value

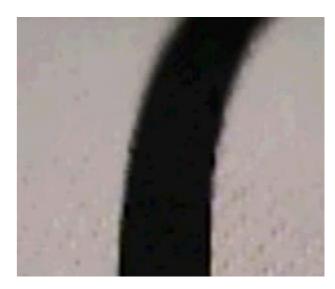

How?

- Let every sensor be represented by a number
 - Example:

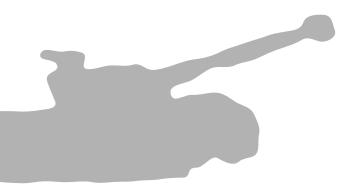
...numbers should be equally spaced


- Add up the numbers where a line is detected
 - Example:

We'll add up 1 and 3 Total: $\underline{4}$


- Calculate the average
 - Example: Average = 4 / 2 = 2

This is the number that represents the center of the line



Other Applications

- Use with a camera image for line following
 - Camera images have hundreds or thousands of pixels; try writing conditions for every possible combinations of that!

- For finding center of a shape
 - Useful for identifying position of objects in a photo

<u>Silhouette of a tank</u> How would you find the center?

What's next?

 Now that we know the position of the line (pos), we can apply any number of methods for line following, such as...

```
if (pos > 0) {
    WheelLeft = 20;
    WheelRight = 10;
} else {
    WheelLeft = 10;
    WheelRight = 20;
}
```

2 States

```
int speed = 50;
if (pos > 0) {
    WheelLeft = speed;
    WheelRight = speed - (2 * speed * pos / 5.0);
} else {
    WheelLeft = speed - (2 * speed * -pos / 5.0);
    WheelRight = speed;
}
```

```
if (pos > 3) {
    WheelLeft = 20;
    WheelRight = 10;
} else if (pos > -3) {
    WheelLeft = 20;
    WheelRight = 20;
} else {
    WheelLeft = 10;
    WheelRight = 20;
}
```

If you want to improve...

• Program in a <u>structured</u> manner

• Build useful functions that you can <u>reuse</u>

 Move out of your comfort zone, don't just keep doing the same thing

Copyright

- Created by A Posteriori LLP
- Visit http://aposteriori.com.sg/ for more tips and tutorials
- This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

