

RCAP CoSpace Autonomous Driving
(Useful Functions 2)

Competition Timeline

● 22 May (Team Description and Video)
– Submit Team Description Paper & Video
– Template will be provided by email

● 23 to 26 May (Warm-up)
– Warm up exercises (...not graded)
– Helps you familiarize yourself with competition procedure

● 29 May (Preliminary games) (Saturday)
– Given a fixed time to solve challenge map
– Do from home
– Details to be sent via email

Competition Timeline

● 31 May (Announcement of Finalist)
– Notified via email

● Finalists: 3 Jun (Video submission)
– Another video. This time describing the game strategy

● Finalists: 5 - 9 Jun (Interview)
– Interview via Zoom

● Finalists: 10 Jun (Announcement of selected
students)

● Finalist: 12 Jun (Grand Finals)

Before We Start

The angles in Cospace are worse than I thought...

0

90

180

270

RotationZ

180

270

 0

90

RotationZ

Task 1 to 3 Maps Future City Map

Angles in Cospace

● Different across maps
– Some “North = 0 degrees”
– Others “North = 180 degrees”
– Doesn’t depend on the direction the robot face at the start
– Check at the start and modify your program accordingly

● So far, all the angles increases when rotating
counter-clockwise
– If this is not true, you’ll need to change the direction that

your robot turns in Gyro follower

What Else?

● Actions
– move_steering(steering, speed)

● Separates “steering” (curvature of turn) and “speed”
● Allows you to change speed without changing how much the

robot turns
● You may already have the algorithm (...it’s in the proportional

line follower)

– gyro_follow(angle, speed)
● Used when not following line
● Situational; May be useful for shortcuts

– turn_to_angle(angle)
● Turns fast at start, then slow down when close to angle

Why?

● Turn fast at the start
– Save time

● Slows down near target angle
– Accurate turns

Turn to Angle

● Very similar to line and Gyro follower

● Main difference; Instead of controlling direction
to move (steering), we control the speed

Line / Gyro Follower

● Look at line position or
gyro angle

● Decide whether to...
● Turn left
● Turn right
● Go straight

Turn to Angle

● Look at gyro angle
● Decide...

● How fast to turn

Turn to Angle

● There is already one provided!
– It’s called “TurnTo”, and it’s in the default C source

file
– It uses a 5-states algorithm
– Only does an on-the-spot turn (ie. no curve turn)

on-the-spot
turn curve turn

on-the-spot
turn

Proportional Control

1) Calculate the error
(error = whatYouHave – whatYouWant)

2) Calculate the correction
(correction = error * gain)

3) Apply the correction

Proportional Turn to Angle

1) Modify RotationZ so that angles on the right are always
smaller and left always are larger (...this was covered
last lesson)

2) Calculate the error
(error = what_you_have – what_you_want)

3) Calculate the correction (speed)
(speed = error * gain)

4) Use move steering to apply the speed

Proportional Turn to Angle
void turnToAngle(int angle, int steering)
{
 if (angle > 180) {
 if (RotationZ < (angle – 180)) {
 RotationZ += 360;
 }
 } else {
 if (RotationZ > (angle + 180)) {
 RotationZ -= 360;
 }
 }

 float err = RotationZ – angle;
 float speed = err * 0.3;
 moveSteering(speed, steering);
}

Modify RotationZ if necessary
(...same as last week)

Calculate error

Calculate speed (gain = 0.3)

Apply speed to move steering

This function lets us set steering, so that we can use it for an on-the-spot turn,
or for a curve turn.

Tuning Gain

● High Gain
– Turns fast, but may overshoot

and turn back

● Low Gain
– Less overshoot, but turns slow
– WARNING! If gain is too low, it may never reach the target

angle

● We want high gain (...to be fast), but avoid the
overshoot. How?

Overshoot and
turn back

Derivative Control

● Proportional control looks at...
– Position (eg. line position)

...or...
– Angle (degrees)

● Derivative control looks at the rate of change...
– Rate of change of position
– Rate of change of angle (degrees per second)

Proportional and Derivative

Example: turnToAngle(90)
● Proportional control:

– We want angle to be 90 degrees.
– If it is not, apply a correction

● Derivative control:
– We want rate of turn to be 0 degrees per second
– If it is not, apply a correction

float err = RotationZ – angle;
float speed = err * 0.3;

Getting rate of change

● Angle is available from RotationZ
● What about rate of change of angle?

● Apply your math:
– If the angle is 10 degrees at t=0, and 25 degrees at

t=2, what is the rate of change of angle?
– rate of change = (end – start) / time

 = (25 – 10) / 2
 = 15 / 2
 = 7.5 degrees per second

Getting rate of change

static int prevAngle = 1000;
float rateOfAngle = 0;

if (prevAngle != 1000) {
 rateOfAngle = (RotationZ – prevAngle) / 0.025;
}
prevAngle = RotationZ;

rate of change = (end – start) / time

static means that the variable
will only be set the first time
the function is executed We initialize it to an impossible

angle at the start

If the angle is 1000,
this means we don’t
have an actual
previous angle yet,
so we can’t
calculate the rate.

Calculate rate using the
formula

Save the current
rotation.

Derivative Control

1) Calculate the error
(d_error = whatYouHave – whatYouWant)
(d_error = rateOfAngle – 0) // We want rate to be 0
(d_error = rateOfAngle)

2) Calculate the correction
(d_correction = d_error * d_gain)
(d_speed = rateOfAngle * -1)
Notice that d_gain is negative because we want to slow down

3) Combine with Proportional control and apply the correction
move_steering(p_speed + d_speed, steering)

Code?

● Nope. That’s for you to figure out.
● I’ve already covered all the tricky bits.
● You won’t learn if you’re just copying code.

Copy Code

Infant Stage

Write Code

Toddler Stage

Read equations
 / algorithms

Write Code

Teenager Stage

Figure out your
own equations

/ algorithms

Copyright

● Created by A Posteriori LLP
● Visit http://aposteriori.com.sg/ for more tips and

tutorials
● This work is licensed under a Creative Commons

Attribution-ShareAlike 4.0 International License.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

