

# RCAP CoSpace Autonomous Driving (Useful Functions)

A POSTERIORI

Play · Experience · Learn

## **Competition Timeline**

- 22 May (Team Description and Video)
  - Submit Team Description Paper & Video
  - Template will be provided by email
- 23 to 26 May (Warm-up)
  - Warm up exercises (...not graded)
  - Helps you familiarize yourself with competition procedure
- 29 May (Preliminary games) (Saturday)
  - Given a fixed time to solve challenge map
  - Do from home
  - Details to be sent via email

### **Competition Timeline**

- 31 May (Announcement of Finalist)
  - Notified via email
- Finalists: 3 Jun (Video submission)
  - Another video. This time describing the game strategy
- Finalists: 5 9 Jun (Interview)
  - Interview via Zoom
- Finalists: 10 Jun (Announcement of selected students)
- Finalist: 12 Jun (Grand Finals)

# Gyro Follower

We did this already, but...



 ...the gyro follower only corrects the heading, not the offset

# Gyro Follower

We want this...



- ...but the gyro only tells us the <u>direction</u> the robot is facing, not the <u>position</u>
- So how?

# Integral Control

 We've previously looked at <u>Proportional</u> and <u>Derivative</u>

- Proportional looks at the error
- Derivative looks at rate of change of error
- Integral looks at the <u>accumulated error</u>

How to find accumulated error?

#### Accumulated Error

Error is negative for some time at the start...



• To accumulate the error, we just need to add it up...

static means that the variable will only be set the first time the function is executed

```
static int accumulated_error = 0;
// Calculate error here
accumulated_error += error;
Add error to
accumulated_error
```

#### Accumulated Error

How it works...



# Integral Control

```
    Calculate the <u>error</u>
        (i_error = whatYouHave - whatYouWant)
        (i_error = accumulated_error - 0)
        // We want accumulated_error to be 0
        (i_error = accumulated_error)
    Calculate the <u>correction</u>
        (i_correction = i_error * i_gain)
        (i_steer = i_error * 0.1)
        // Accumulated error can be very large, so keep the gain small
```

3) Combine with Proportional control and apply the correction move\_steering(speed, p\_steer + i\_steer)

#### **Robot Behavior**



#### Accumulated Error

accumulated\_error will reduce to zero...



#### **Robot Behavior**



Both error and accumulated\_error are zero, so the the robot go straight

#### PID Control

- Combines Proportional, Integral, Derivative
- Widely used, eg...
  - Aircon temperature control
  - Airplane auto-pilot
  - Robots
- Using all 3, means having 3 gains to tune
  - Can be difficult, so only use what you need





#### Code?

- Nope. That's for you to figure out.
- I've already covered all the tricky bits.
- You won't learn if you're just copying code.



# Copyright

- Created by A Posteriori LLP
- Visit http://aposteriori.com.sg/ for more tips and tutorials
- This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.



