Single Sensor Line Follower

A POSTERIORI

Play · Experience · Learn

Before We Start

Robot

 Use the "Single Sensor Line Follower" robot

World

- Use "Line Following Challenges" world
- Select "Simple Curves" challenge

One Sensor Line Following

- Sensor on <u>edge</u> of line
- If sensor is reading...
 - White: Robot is too far right and needs to turn left
 - Black: Robot is too far left and needs to turn right

Light Sensor Value 100 (White) Pseudo Code **Turn Left** IF Value > 50: Turn Left **ELSE:** 50 Turn Right **Turn Right** 0 (Black)

- Loops forever
- Checks reflected light
 - White (>50): Turn Left
 - Black (<50): Turn Right
- Robot "wiggles" left and right

```
repeat while true

do if color_sensor reflected light intensity on port Auto >> 50

do move steering with direction 50 and speed 20 %

else move steering with direction 50 and speed 20 %
```

```
while True:
    if color_sensor_in1.reflected_light_intensity > 50:
        steering_drive.on(-50, 20)
    else:
        steering_drive.on(50, 20)
```

Initialization of motors and sensor not shown here.

Common Problems

- Problem:
 - Movement is slow and jerky
- Why?:
 - Robot ONLY move left and right. It never goes straight.

- Problem:
 - Robot can't handle very sharp turns
- Why?:
 - Robot only turns at "50" and "-50" (...max is 100)
 - What happens if we increase the turn to 100?

- Check for Black, White, and Grey
 - White (>60): Turn Left
 - Grey (Between 40 to 60): Go Straight
 - Black (<40): Turn Right
- Robot runs smoother


```
When Started
repeat while
                true
    😝 if
                  color sensor reflected light intensity v on port Auto v > v
     do
           move steering with direction 8 -50
                                             and speed
     else if
                  color sensor reflected light intensity on port Auto
     do
           move steering with direction 0
                                            and speed 20 % v
     else
           move steering with direction 50
                                             and speed 1
                                                        20
```

```
while True:
    if color_sensor_in1.reflected_light_intensity > 60:
        steering_drive.on(-50, 20)
    elif color_sensor_in1.reflected_light_intensity > 40:
        steering_drive.on(0, 20)
    else:
        steering_drive.on(50, 20)
```

Common Problems

- Problem:
 - Better than 2 states, but still a little jerky
 - May be good enough
- Can we do better?

Light Sensor Value

Pseudo Code

```
IF Value > 80:
   Turn Sharp Left
ELSE IF Value > 60:
   Turn Slight Left
ELSE IF Value > 40:
   Go Straight
ELSE IF Value > 20:
   Turn Slight Right
ELSE
Turn Right
```

- Checks for 5 levels of light sensor value
- Robot runs even smoother than 3 states

```
When Started
repeat while
                true
    if
                color sensor reflected light intensity v on port Auto v >v 80
          move steering with direction 1 -50 and speed 20 % 7
    else if
                color sensor reflected light intensity on port Auto > 1 60
          move steering with direction 1 -25 and speed 20 % 7
    else if
                color sensor reflected light intensity v on port Auto v > 1 40
          move steering with direction 0 0 and speed 20
    else if
                color sensor reflected light intensity on port Auto 20
          move steering with direction 25 and speed 20 %
          move steering with direction 50 and speed
```

```
while True:
    if color_sensor_in1.reflected_light_intensity > 80:
        steering_drive.on(-50, 20)
    elif color_sensor_in1.reflected_light_intensity > 60:
        steering_drive.on(-25, 20)
    elif color_sensor_in1.reflected_light_intensity > 40:
        steering_drive.on(0, 20)
    elif color_sensor_in1.reflected_light_intensity > 20:
        steering_drive.on(25, 20)
    else:
        steering_drive.on(50, 20)
```

Comparison of 2, 3, 5 States

What happens if I increase the number of states? (eg. 7 states, 9 states, 11 states)

Increasing number of states

Left

Right

As we increase the number of states, the diagram starts to look more like a line.

50

What if we have an infinite number of states?

100

...we'll get a straight line! What's the equation of the line?

Equation of the Line

Standard form

$$y = mx + c$$

• Crosses x axis at x = 50, y = 00 = m(50) + cm = -c / 50

Substitute and rearrange

$$y = (-c / 50)x + c$$

 $y = -c (x / 50 - 1)$
 $y = -c / 50 (x - 50)$
 $y = k (x - 50)$, where $k = -c / 50$

Equation of Line (Engineering Style)

^{*} The "p" in "Kp" stands for proportional. In a full PID (Proportional, Integral, Derivative) control, you will also have an "Ki" and "Kd".

Proportional Control

```
while True:
    steering_drive.on(1.5 * (color_sensor_in1.reflected_light_intensity - 50), 20)
```

I'm using a gain of "1.5". Experiment with other gain value (eg. 0.2, 1.0, 2.0) and see how that affects your robot.

Changing Gain

- Increase Gain
 - Turns more sharply, may wobble
- Decrease Gain
 - Tuns more smoothly, may fail at sharp turns
- Negative Gain?
 - Try it out

Setting gain higher than "2" may cause an error. Try it out, read the error message, and see if you can figure out why.

Is Proportional Control the Best Solution?

• Depends. Proportional controls have a <u>straight line</u> response, and you <u>can only tune the Gain</u> (gradient of the line)

 High gain may wobble too much, low gain may fail at sharp turns. Depending on the map and robot, there may not exist a Gain value that is both smooth and can handle sharp turns.

Areas to Explore

- Non-proportional controls (ie. not a straight line eqn).
 - Will a quadratic eqn work? (spoiler: No it won't, but why not?)
 - What about a cubic eqn?

 Add in Integral and Derivative terms to make it a PID controller

Challenges

Try to complete the "Sharp Turns" challenge

 Create a modified version that follows the <u>right</u> edge of the line

Use the same concept to create a wall / gyro follower

A POSTERIORI Play · Experience · Learn

- Created by A Posteriori LLP
- Visit http://aposteriori.com.sg/ for more tips and tutorials
- This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.