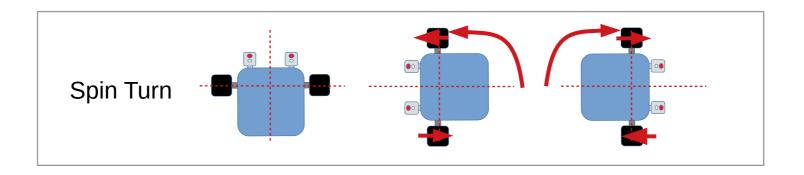
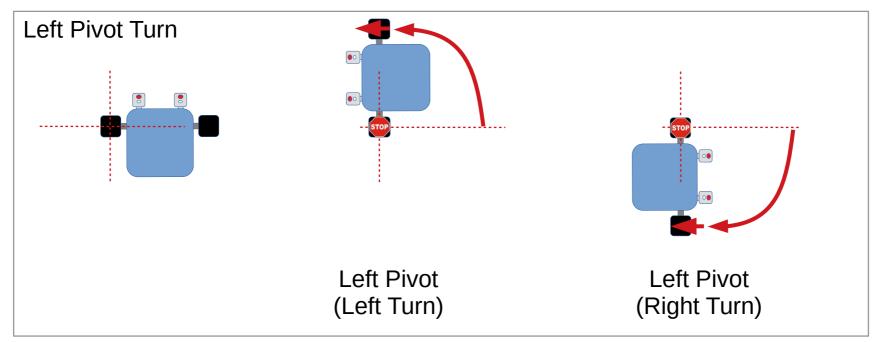
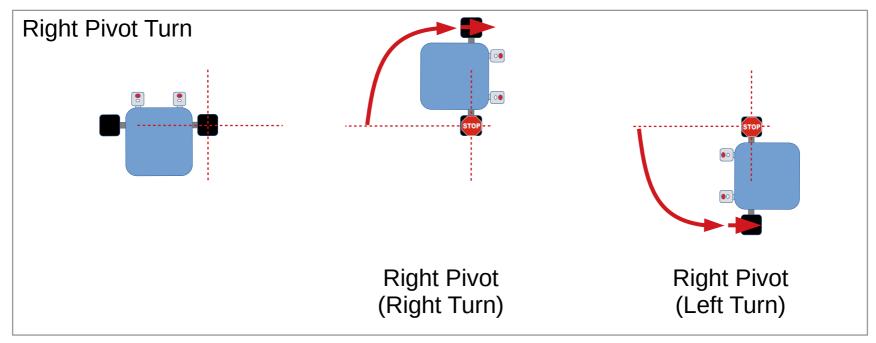


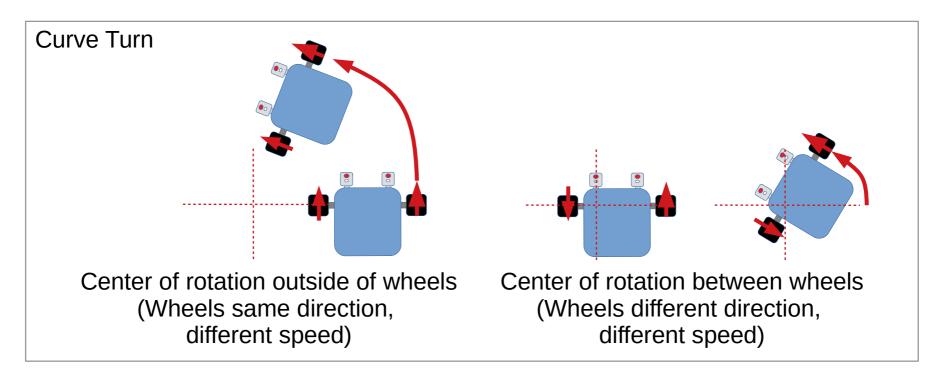
mindsterms


Gyro Turn



- 4 Types:
 - Spin Turn
 - Left Pivot
 - Right Pivot
 - Curve Turn
- Differs in the location of the center of rotation


- Spin Turn
 - Both wheels turns at equal speed, but in opposite directions
 - Center of rotation is in the middle between two wheels


- Left Pivot
 - Left wheel stationary
 - Only right wheel moves
 - Center of rotation is on the left wheel

- Right Pivot
 - Right wheel stationary
 - Only left wheel moves
 - Center of rotation is on the right wheel

- Curve Turn
 - Both wheels moves, but at different speed
 - Center of rotation may be between the wheels or outside of the wheels

Example Commands

Turns	Move Steering	Move Tank
Spin Turn	Steer: -100, Speed: 20 (left turn) Steer: 100, Speed: 20 (right turn)	Left: -20, Right: 20 (left turn) Left: 20, Right: -20 (right turn)
Left Pivot	Steer: -50, Speed: 20 (left turn) Steer: -50, Speed: -20 (right turn)	Left: 0, Right: 20 (left turn) Left: 0, Right: -20 (right turn)
Right Pivot	Steer: 50, Speed: 20 (right turn) Steer: 50, Speed: -20 (left turn)	Left: 20, Right: 0 (right turn) Left: -20, Right: 0 (left turn)
Curve	Steer: -100 to 100 Speed: Any	Left: Any, Right: Any

Curve Turn

- Most flexible
 - By setting the steering or left/right speed, a curve turn can replicate any of the turns (ie. spin, left pivot, right pivot)
- Hard to predict
 - Easy to predict how spin and pivot turns will behave
 - Hard to predict curve turns, as the center of rotation is not easily found

Gyro Turn

- Why?
 - Improve consistency of turns
 - Small errors in turns can result in large error in position
 - Especially important after line following, as the direction of the robot after line following is somewhat unpredictable

Basic Gyro Turn

- 1) Start Turning
- 2) Wait until robot reaches target angle3) Stop

```
def gyro_spin_right(target_angle):
move_steering(100, 20)
while gyro_angle < target_angle:
    Pass
    stop()</pre>
```

<u>Pseudo Code</u> Don't copy it blindly; it won't work Read it, understand it, write your own

Basic Gyro Turn

- Problem:
 - Overshoot target angle
- Cause:
 - Robot can't stop instantly. Momentum will carry it slightly pass the target angle.
- Solutions (3 options):
 - 1) Go slower
 - 2) Stop slightly before target angle
 - 3) Go fast, but slow down before reaching target angle

Basic Gyro Turn

- Solutions 1 and 2:
 - A combination of "Go slower" and "Stop slightly before target angle" can be adequate
 - Slow speed will waste some time
 - If that works well for you, go ahead!
 - Turns need not be perfect, as the gyro move will compensate for small errors
 - Recommend to keep error within 1 to 2 degrees

- Solution 3
 - Go fast, but slow down before reaching target angle
 - Can apply any of the feedback control techniques used in line / gyro follower (eg. 2-states, 3-states proportional)
 - Use the feedback (gyro angle) to calculate the error (difference between gyro angle and target angle)
 - Use the error to control the turning speed

- 2-States control
 - 1st State: error > 10 degrees; go fast
 - 2nd State: error < 10 degrees; go slow
 - Break: error is zero or less; exit loop and stop

```
def gyro_spin_right(target_angle):
while True:
    error = target_angle - gyro_angle
    if error > 10:
        move_steering(100, 50)
    elif error > 0:
        move_steering(100, 20)
    else:
        break
stop()
```

<u>Pseudo Code</u> Don't copy it blindly; it won't work Read it, understand it, write your own

- Proportional control
 - Speed is proportional to error
 - Break: error is zero or less; exit loop and stop
 - Tune your gain accordingly

```
def gyro_spin_right(target_angle):
while True:
    error = target_angle - gyro_angle
    correction = gain * error
    if error > 0:
        move_steering(100, correction)
    else:
        break
stop()
```

<u>Pseudo Code</u> Don't copy it blindly; it won't work Read it, understand it, write your own

- Tips
 - Error may be positive or negative depending on the direction of turn; adjust your code accordingly
 - Depending on your programming platform, you may get an error if the speed is too high
 - If the speed is too low, your robot may stop moving entirely
 - If using proportional control, you may want to constraint your speed to a minimum and maximum value to avoid these problems

Advanced Gyro Turn?

- Sudden acceleration may cause wheels to skid
 - Not an issue for pivot turns
 - Can change center of rotation for spin and curve turns
- Avoid this by increasing speed gradually
- Utility depends on robot's weight, tire friction, motor power, etc. Some robots are more prone to skidding than others

Functions / My Blocks

- These are useful functions / my blocks that you should prepare
- Simple
 - Spin_Left (target_angle)
 - Spin_Right (target_angle)
 - Left_Pivot_Left (target_angle)
 - Left_Pivot_Right (target_angle)
 - Right_Pivot_Left (target_angle)
 - Right_Pivot_Right (target_angle)

Functions / My Blocks

- Intermediate
 - Spin (target_angle)
 - Left_Pivot (target_angle)
 - Right_Pivot (target_angle)
- Fewer functions / my blocks
- Figures out which way to turn by comparing current gyro angle with the target angle

Functions / My Blocks

- Advanced
 - Curve (target_angle, steering)
- Only one curve turn
- Figures out which way to turn by comparing current gyro angle with the target angle
- Steering parameter controls the center of rotation

Copyright

- Created by A Posteriori LLP
- Visit http://aposteriori.com.sg/ for more tips and tutorials
- This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

