

Gyro Follower

Gyro Follower

● Very similar to line follower

● Main difference; We always keep the line in the
center (value = 0), but for gyro, the value
depends on the direction we are following

Line Follower

● Look at line position
● Decide whether to...

● Turn left
● Turn right
● Go straight

Gyro Follower

● Look at gyro angle
● Decide whether to...

● Turn left
● Turn right
● Go straight

Gyro Follower

● Uses the same algorithms as line follower (eg.
3 States, 5 States, Proportional)

def gyro_follow(target_angle, speed):
 if gyro_angle < target_angle:
 # Turn Right
 move_steering(10, speed)
 elif gyro_angle > target_angle:
 # Turn Left
 move_steering(-10, speed)
 else:
 # Go straight
 move_steering(0, speed)

3 States

Pseudo Code
Don’t copy it blindly; it won’t work
Read it, understand it, write your own

Example

Target Angle is 90 degrees
Gyro angle is 88 degrees

def gyro_follow(target_angle, speed):
 if gyro_angle < target_angle:
 # Turn Right
 move_steering(10, speed)
 elif gyro_angle > target_angle:
 # Turn Left
 move_steering(-10, speed)
 else:
 # Go straight
 move_steering(0, speed)

3 States

target_angle: 90

gyro_angle: 88

First condition is true:
● gyro_angle is less

than target_angle

Example

Target Angle is 90 degrees
Gyro angle is 88 degrees

def gyro_follow(target_angle, speed):
 if gyro_angle < target_angle:
 # Turn Right
 move_steering(10, speed)
 elif gyro_angle > target_angle:
 # Turn Left
 move_steering(-10, speed)
 else:
 # Go straight
 move_steering(0, speed)

3 States

target_angle: 90

gyro_angle: 88

Robot turns to the right
● “move steering 10” is

a slight right turn

Example

Target Angle is 90 degrees
Gyro angle is 92 degrees

def gyro_follow(target_angle, speed):
 if gyro_angle < target_angle:
 # Turn Right
 move_steering(10, speed)
 elif gyro_angle > target_angle:
 # Turn Left
 move_steering(-10, speed)
 else:
 # Go straight
 move_steering(0, speed)

3 States

target_angle: 90

gyro_angle: 92

Second condition is
true:
● gyro_angle is greater

than target_angle

Example

Target Angle is 90 degrees
Gyro angle is 92 degrees

def gyro_follow(target_angle, speed):
 if gyro_angle < target_angle:
 # Turn Right
 move_steering(10, speed)
 elif gyro_angle > target_angle:
 # Turn Left
 move_steering(-10, speed)
 else:
 # Go straight
 move_steering(0, speed)

3 States

target_angle: 90

gyro_angle: 92

Robot turns to the left
● “move steering -10” is

a slight left turn

Example

Target Angle is 90 degrees
Gyro angle is 90 degrees

def gyro_follow(target_angle, speed):
 if gyro_angle < target_angle:
 # Turn Right
 move_steering(10, speed)
 elif gyro_angle > target_angle:
 # Turn Left
 move_steering(-10, speed)
 else:
 # Go straight
 move_steering(0, speed)

3 States

target_angle: 90

gyro_angle: 90

Neither the first nor
second conditions are
true:
● If none of the “if”

matches, follow the
“else” condition

Example

Target Angle is 90 degrees
Gyro angle is 90 degrees

def gyro_follow(target_angle, speed):
 if gyro_angle < target_angle:
 # Turn Right
 move_steering(10, speed)
 elif gyro_angle > target_angle:
 # Turn Left
 move_steering(-10, speed)
 else:
 # Go straight
 move_steering(0, speed)

3 States

Robot go straight
● “move steering 0” is a

straight

target_angle: 90

gyro_angle: 90

Looping

● If you tried the program now, it won’t work
● The “gyro_follow” function only checks the gyro

angle ONE time, then it’ll stop checking and
continue moving in the same direction

● Need to use a loop to continuously check the
gyro angle

while True:
 gyro_follow(0, 100)

Note
● A “while True” loop will never end, but it is useful for testing
● To make this useful, you’ll need someway to end the loop. Read the “Ending the loop”

to learn how

Advanced Algorithms

● Proportional algorithm
– Same approach as with a line follower
– Not as useful, as angle errors are usually only 1

degree
– If angle errors are large after a turn, it’s better to

improve your turn algorithm to be more accurate

Advanced Algorithms

● Proportional + Integral (PI) algorithm
– Improve accuracy over longer distances
– Not much of a difference over short to medium

distances
– Proportional / 3 States / 5 States / etc, only corrects

current heading, does not correct for accumulated
errors

– PI algorithm will correct accumulated error, allowing
better accuracy

Advanced Algorithms

● Proportional / 3 States / 5 States algorithm

● PI (proportional + integral) algorithm

Direction correct, but
position is slightly off

Direction correct, and
position error is minimized

Angles in the EV3

● Angle when program starts is always 0 degrees
● Angles don’t rollover

– Turning left will give -1 degree instead of 359
degrees

– Rotating right for one round will give 360 degrees
and not 0 degrees

Gyro Problems

● Not properly calibrated
– Gyro auto-calibrates when it is plugged into the EV3
– The reset command does not calibrates the gyro
– It must be perfectly still during calibration
– Don’t move it, don’t shake it, don’t even touch the

table
– If properly calibrated, the gyro reading should stay

constant (...need not be zero) when the robot is not
moving

Gyro Problems

● Bug in the EV3
– Bug in the EV3 will occasionally cause the gyro to

re-calibrate itself in the middle of a run
– If it happens, any functions that relies on the gyro

will go crazy
– You can’t fix it, you can’t avoid it, but thankfully, it

doesn’t happen very often

Copyright

● Created by A Posteriori LLP
● Visit http://aposteriori.com.sg/ for more tips and

tutorials
● This work is licensed under a Creative Commons

Attribution-ShareAlike 4.0 International License.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

