A POSTERIORI

Play - Experience - Learn

SINGLE SENSOR LINE
FOLLOWER

One Sensor Line Following

e Sensor on edge of line

* If sensor Is reading...

— White: Robot Is too far
right and needs to turn
left

- Black: Robot is too far
left and needs to turn
right

2 States Algorithm

° LOOpS fOrever Light Sensor Value
* Switch monitors —— 100 (White)
reflected light
Pseudo Code
- White (>50): Turn Turn Left IF Value > 50:
| eft ELEE[:-n Left
urn Righ
- Black (<50): Turn — 50 e
Right
* Robot “wiggles” left Turn Right
and right
Y 0 (Black)

2 States Algorithm

def line follow(speed):
if color_value > 50:

Turn Left
move_steering(-10, speed) Pseudo Code
else: Don’t copy it blindly; it won’t work
Turn Right ~ Read it, understand it, write your own
move _steering(10, speed)
IMPORTANT!

The function does not have a loop.
You'll need to either call the function in
a loop, or add a loop into the function.

while True:

line_follow(100)

Why 507
* If the sensor is calibrated to “Black: 0", “White: 100", 50 is the mid point between them.
* Some robots / APl do not have a way to calibrate the sensor, if so...

* Black and White won'’t be 0 and 100

* Mid point will not be 50

* You'll need to measure black and white and determine the midpoint yourself

Looping

* If you tried the program now, it won’t work

* The “line_follow” function only checks the color
sensor ONE time, then it’ll stop checking and
continue moving in the same direction

* Need to use a loop to continuously check the
color sensor

while True:

line_follow(100)

Note
* A*while True” loop will never end, but it is useful for testing
* To make this useful, you'll need someway to end the loop. Read the “Ending the loop”

to learn how

Common Problems

* Problem:
- Movement is slow and jerky
* Why?:

- Robot ONLY move left and right. It never goes
straight.

3 States Algorithm

 Check for Black,
White, and Grey

- White (>60): Turn
Left

- Black (<40): Turn
Right

- Grey (Between 40 to
60): Go Straight

e Robot runs smoother

Light Sensor Value

A

100 (White)

Turn Left

60

L

Go Straight
40

L

Turn Right

0 (Black)

Pseudo Code
IF Value > 60:

Turn Left

ELSE IF Value > 40:
Go Straight

ELSE
Turn Right

3 States Algorithm

def line follow(speed):
i1f color_value > 60:
Turn Left
move_steering(-40, speed)
elif color_value > 40: Pseudo Code

Go Straight ~ Don’t copy it blindly; it won’t work

move steering(0, speed) Read it, understand it, write your own
else:

Turn Right
move_steering(40, speed)

Note

* The “40” and “60” are just examples, you’ll need to measure and decide on suitable
values for yourself
* | like to perform my comparison from top down, starting from the highest value (>60),

and moving down. It’s not the most efficient, but it's neater and I'm less likely to make
mistakes.

Common Problems

* Problem:
— Better than 2 states, but still a little jerky
- May be good enough

e Can we do better?

5 States Algorithm

* Take It a step
further by checking
for 5 levels of light
sensor value:

e Robot runs even
smoother than 3
states

Light Sensor Value

T 100 (White)
Sharp Left
X 80 Pseudo Code
- IF Value > 80:
Slight Left Turn Sharp Left
- 60 ELSE IF Value > 60:

) Turn Slight Left
Go Straight RIS SRV

X 40 Go Straight

ELSE IF Value > 20:
Slight Right Turn Slight Right

L

20 ELSE
Turn Right

Sharp Right

0 (Black)

5 States Algorithm

def line follow(speed):
if color_value > 80:
Turn Sharp Left
move_steering(-80, speed)
elif color_value > 60: Pseudo Code

Turn Slight Left ~ Don’t copy it blindly; it won’t work

move steering(-40, speed) Read it, understand it, write your own
elif color_value > 40:

Go Straight

move_steering(0, speed)
elif color_value > 20:

Go Slight Right

move_steering(40, speed)
else:

Turn Sharp Right

move_steering(80, speed)

Note
* As before, the numbers used are just examples, you'll need to measure and decide on
suitable values for yourself

Comparison of 2, 3, 5 states

eft eft eft

100

Right Right Right

What happens if | increase the number of states?
(eg. 7 states, 9 states, 11 states)

Increasing number of states

eft

As we increase the number of
states, the diagram starts to look
more like a straight line.

What if we have an infinite
number of states?

eft

Right
" 50

...we’ll get a straight line!
What's the equation of the line?

Right

Equation of line

L eft
e Standard form

y=mx+c

* Crossesxaxisatx=50,y=0 y X
0 = m(50) f 0 50 100
m=-c/50

e Substitute and rearrange
y=(-c/50)x +c
y=-c(x/50-1)

y =-c/50 (x —50)
y=k(Xx-50) , wherek=-c/50

Right

Equation of line
(Engineering Style)

Sensor

Gain value Midpoint

Add to right

/ motor
Kp X QS — 50)/

N "\ Subtract from left
\— ~ Frror motor

Correction

These are standard engineering terminology. Professional engineers uses these terms
to make themselves sound smarter. You should do the same!

*The “p” in “Kp” stands for proportional. In a full PID (Proportional, Integral, Derivative)
control, you will also have an “Ki” and “Kd”.

Proportional Control

def line follow(speed):

GAIN = 2
error = color_value - 50
correction = GAIN * error - Pseudo Code
- Don’t copy it blindly; it won’t work
move_steering(correction, speed) Read it, understand it, write your own

Note

* The value of “GAIN” doesn’t change when the program is running. Such values are called
constants, and by convention, we use all CAPS to name them.

* As before, you'll need to determine a suitable mid point

e GAIN will need to be tuned for your robot

Proportional Control

* Changing Gain:
- Increase: Turns more sharply, may wobble
- Decrease: Tuns more smoothly, may fail at sharp turns

* |s proportional control the best solution?

- Depends. Proportional controls have a straight line
response, and you can only tune the Gain (gradient
of the line)

- High gain may wobble too much, low gain may fail at
sharp turns. Depending on the map and robot, there
may not exist a Gain value that is both smooth and
can handle sharp turns.

Proportional Control

* Test to find the best gain!
— Suggest testing within the range of 0.1 to 4

* Possiblilities to explore:

— Gain as a parameter to the line follower function
* Allow you to use the best gain for each situation

— Non-proportional control (ie. not a straight line egn).
* Will a quadratic egn work? (spoiler: No it won’t, but why not?)
 What about a cubic egn?

- Add in Integral and Derivative terms to make it a PID
controller

Ending the Loop

* A“while True” loop will never end; your robot will line
follow forever and won’t do anything else

* Need to stop the line following at some point

 Most common is by wheel rotations

def line _follow distance(cm, speed):

while True: target_degrees = cm / circumference * 360

line_follow(100) left_wheel reset degrees()

while left _wheel degrees < target_degrees:
line_follow(speed)

Note
» (Slightly) Better to use the average of the left and right wheel
* Reset the wheel rotation to zero before starting the loop

* If the wheel is going backwards, the degrees will decrease and become negative.
Adjust the code accordingly.

Ending the Loop

* Other options for ending the loop...
- By ultrasonic sensor distance

- Until left
- Until left

/ right color sensor sees black
/ right color sensor sees white

* The robot will not stop automatically when the
loop ends, you’ll need to give It a stop

commanc
e Same tec

nnique applies to gyro follower

Copyright

* Created by A Posteriori LLP

* Visit http://aposteriori.com.sg/ for more tips and
tutorials

 This work Is licensed under a Creative Commons
Attribution-ShareAlike 4.0 International License.

©00]
A POSTERIORI

Play - Experience - Learn

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

