

SINGLE SENSOR LINE
FOLLOWER

One Sensor Line Following

● Sensor on edge of line
● If sensor is reading…

– White: Robot is too far
right and needs to turn
left

– Black: Robot is too far
left and needs to turn
right

2 States Algorithm

● Loops forever
● Switch monitors

reflected light
– White (>50): Turn

Left
– Black (<50): Turn

Right
● Robot “wiggles” left

and right

100 (White)

Light Sensor Value

0 (Black)

50

Turn Left

Turn Right

IF Value > 50:
 Turn Left
ELSE:
 Turn Right

Pseudo Code

2 States Algorithm

def line_follow(speed):
 if color_value > 50:
 # Turn Left
 move_steering(-10, speed)
 else:
 # Turn Right
 move_steering(10, speed)

Pseudo Code
Don’t copy it blindly; it won’t work
Read it, understand it, write your own

Why 50?
● If the sensor is calibrated to “Black: 0”, “White: 100”, 50 is the mid point between them.
● Some robots / API do not have a way to calibrate the sensor, if so…

● Black and White won’t be 0 and 100
● Mid point will not be 50
● You’ll need to measure black and white and determine the midpoint yourself

IMPORTANT!
The function does not have a loop.
You’ll need to either call the function in
a loop, or add a loop into the function.

while True:
 line_follow(100)

Looping

● If you tried the program now, it won’t work
● The “line_follow” function only checks the color

sensor ONE time, then it’ll stop checking and
continue moving in the same direction

● Need to use a loop to continuously check the
color sensor

while True:
 line_follow(100)

Note
● A “while True” loop will never end, but it is useful for testing
● To make this useful, you’ll need someway to end the loop. Read the “Ending the loop”

to learn how

Common Problems

● Problem:
– Movement is slow and jerky

● Why?:
– Robot ONLY move left and right. It never goes

straight.

3 States Algorithm

● Check for Black,
White, and Grey
– White (>60): Turn

Left
– Black (<40): Turn

Right
– Grey (Between 40 to

60): Go Straight
● Robot runs smoother

100 (White)

Light Sensor Value

0 (Black)

60

Turn Left

Turn Right

IF Value > 60:
 Turn Left
ELSE IF Value > 40:
 Go Straight
ELSE
 Turn Right

Pseudo Code

40
Go Straight

3 States Algorithm

def line_follow(speed):
 if color_value > 60:
 # Turn Left
 move_steering(-40, speed)
 elif color_value > 40:
 # Go Straight
 move_steering(0, speed)
 else:
 # Turn Right
 move_steering(40, speed)

Pseudo Code
Don’t copy it blindly; it won’t work
Read it, understand it, write your own

Note
● The “40” and “60” are just examples, you’ll need to measure and decide on suitable

values for yourself
● I like to perform my comparison from top down, starting from the highest value (>60),

and moving down. It’s not the most efficient, but it’s neater and I’m less likely to make
mistakes.

Common Problems

● Problem:
– Better than 2 states, but still a little jerky
– May be good enough

● Can we do better?

5 States Algorithm

● Take it a step
further by checking
for 5 levels of light
sensor value:

● Robot runs even
smoother than 3
states

100 (White)

Light Sensor Value

0 (Black)

60
Slight Left

Slight Right

IF Value > 80:
 Turn Sharp Left
ELSE IF Value > 60:
 Turn Slight Left
ELSE IF Value > 40:
 Go Straight
ELSE IF Value > 20:
 Turn Slight Right
ELSE
 Turn Right

Pseudo Code

40
Go Straight

Sharp Left

Sharp Right

80

20

5 States Algorithm
def line_follow(speed):
 if color_value > 80:
 # Turn Sharp Left
 move_steering(-80, speed)
 elif color_value > 60:
 # Turn Slight Left
 move_steering(-40, speed)
 elif color_value > 40:
 # Go Straight
 move_steering(0, speed)
 elif color_value > 20:
 # Go Slight Right
 move_steering(40, speed)
 else:
 # Turn Sharp Right
 move_steering(80, speed)

Pseudo Code
Don’t copy it blindly; it won’t work
Read it, understand it, write your own

Note
● As before, the numbers used are just examples, you’ll need to measure and decide on

suitable values for yourself

Comparison of 2, 3, 5 states
Left

Right

0 50 100

Left

Right

0 50 100

Left

Right

0 50 100

What happens if I increase the number of states?
(eg. 7 states, 9 states, 11 states)

Increasing number of states

Left

Right

0 50 100

As we increase the number of
states, the diagram starts to look
more like a straight line.

What if we have an infinite
number of states?

Left

Right

0 50 100

...we’ll get a straight line!
What’s the equation of the line?

Equation of line
● Standard form

y = mx + c
● Crosses x axis at x = 50, y = 0

0 = m(50) + c
m = -c / 50

● Substitute and rearrange
y = (-c / 50)x + c
y = -c (x / 50 – 1)
y = -c / 50 (x – 50)
y = k (x – 50) , where k = -c / 50

Left

Right

0 50 100

Equation of line
(Engineering Style)

Kp x (S – 50)

Midpoint
Sensor
valueGain

Correction

Add to right
motor

Subtract from left
motor

These are standard engineering terminology. Professional engineers uses these terms
to make themselves sound smarter. You should do the same!

* The “p” in “Kp” stands for proportional. In a full PID (Proportional, Integral, Derivative)
control, you will also have an “Ki” and “Kd”.

Error

Proportional Control
def line_follow(speed):
 GAIN = 2
 error = color_value – 50
 correction = GAIN * error

 move_steering(correction, speed)

Pseudo Code
Don’t copy it blindly; it won’t work
Read it, understand it, write your own

Note
● The value of “GAIN” doesn’t change when the program is running. Such values are called

constants, and by convention, we use all CAPS to name them.
● As before, you’ll need to determine a suitable mid point
● GAIN will need to be tuned for your robot

Proportional Control

● Changing Gain:
– Increase: Turns more sharply, may wobble
– Decrease: Tuns more smoothly, may fail at sharp turns

● Is proportional control the best solution?
– Depends. Proportional controls have a straight line

response, and you can only tune the Gain (gradient
of the line)

– High gain may wobble too much, low gain may fail at
sharp turns. Depending on the map and robot, there
may not exist a Gain value that is both smooth and
can handle sharp turns.

Proportional Control
● Test to find the best gain!

– Suggest testing within the range of 0.1 to 4
● Possibilities to explore:

– Gain as a parameter to the line follower function
● Allow you to use the best gain for each situation

– Non-proportional control (ie. not a straight line eqn).
● Will a quadratic eqn work? (spoiler: No it won’t, but why not?)
● What about a cubic eqn?

– Add in Integral and Derivative terms to make it a PID
controller

Ending the Loop
● A “while True” loop will never end; your robot will line

follow forever and won’t do anything else
● Need to stop the line following at some point
● Most common is by wheel rotations

while True:
 line_follow(100)

def line_follow_distance(cm, speed):
 target_degrees = cm / circumference * 360
 left_wheel_reset_degrees()
 while left_wheel_degrees < target_degrees:
 line_follow(speed)

Note
● (Slightly) Better to use the average of the left and right wheel
● Reset the wheel rotation to zero before starting the loop
● If the wheel is going backwards, the degrees will decrease and become negative.

Adjust the code accordingly.

Ending the Loop

● Other options for ending the loop…
– By ultrasonic sensor distance
– Until left / right color sensor sees black
– Until left / right color sensor sees white

● The robot will not stop automatically when the
loop ends, you’ll need to give it a stop
command

● Same technique applies to gyro follower

Copyright

● Created by A Posteriori LLP
● Visit http://aposteriori.com.sg/ for more tips and

tutorials
● This work is licensed under a Creative Commons

Attribution-ShareAlike 4.0 International License.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

