C300

Dealing with Spike Gyro

$\frac{\text { A POSTERIORI }}{\text { Play } \cdot \text { Experience } \cdot \text { Learn }}$

EV3 vs Spike Gyro

- EV3 gyro
- Always increase when turning clockwise and decrease when turning counter-clockwise
- No upper or lower limit (ie. can be greater than 360 and less than -360)
- Example: 178, 179, 180, 181..., 359, 360, 361...

EV3 vs Spike Gyro

- Spike gyro
- Usually increase when turning clockwise and decrease when turning counter-clockwise
- Rolls over at 180/-180 degrees
- Max of 179 and min of -180
- Example: 178, 179, -180, -179, 178

-90
-180

Problem

- Consider...
- You want to turn towards 50 degrees...

Problem

- Consider...
- All angles within the green area are less than 50...
- ...and we need to turn right

Problem

- Consider...
- All angles within the blue area are more than 50 ...
- ...and we need to turn left

```
if gyro_angle < target:
    turn_right()
elif gyro_angle > target:
    turn_left()
```


Problem

- Consider...
- Angles within the red area are less than $50 \ldots$
- ...but we need to turn left!
- Conflicts with the first condition! 0

```
if gyro_angle < target:
    turn_right()
elif gyro_angle > target:
    turn_left()
```


Problem

- This gets worse as the angle approaches 180 degrees
- Red area gets bigger
- Blue area gets smaller

Solution 1

- Reset the gyro
- Resetting the gyro sets the current direction to 0
- Do this before a gyro turn...
- Works as long as turn is less than 180 degrees
- Do this before a gyro move...
- Simple solution, but will have some drawbacks...

Solution 1

- Drawbacks
- Every reset will introduce some errors
- Consider:
- Perform a gyro turn to 90, but the robot overshoots and turns to 91 instead
- When gyro is reset, 91 will now be treated as 0 and there will be a permanent 1 degree error
- The above error can be corrected with code, but...
- ...overshoot may be less than 1 degree (eg. 0.4 deg) and may not be detectable, and hence uncorrectable in code

Solution 2

- Modify the angles in the red region so that...
- Angles to the left of the target is always less
- Angles to the right of the target is always more
- Angles can be modified by adding / subtracting 360 degrees
- More complicated, but avoids accumulating errors through resets

Solution 2

- How to modify the angles in the red region?

1) Identify angles in red region
2) Modify angles by adding / subtracting 360

- Two cases...
- Target > 0
- Target < 0

Solution 2

1) Identify angle in red region (target angle >0)
a) Find opposite angle (target - 180)
b) Angles less than opposite are in red region
2) Add 360 degrees
```
if target > 0:
    opposite = target - 180
    if gyro_angle < opposite:
        gyro_angle += 360
```


Solution 2

1) Identify angle in red region (target angle <0)
a) Find opposite angle (target +180)
b) Angles more than opposite are in red region
2) Subtract 360 degrees

Best Practice

- In Python:
- Make a function that returns the modified angle
- In Blocks:
- My Blocks can't return a value
- Make a My Block that saves the modified angle in a variable
- Runs the My Block, then read the modified gyro angle from the variable

Copyright

- Created by A Posteriori LLP
- Visit http://aposteriori.com.sg/ for more tips and tutorials
- This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

A POSTERIORI
Play Experience • Learn

